CENG491

DETAILED DESIGN
REPORT

ANKA YAZILIM

January 2006

Aysun BASCETINCELIK
C. Acar ERKEK
Cagil OZTURK
Mennan GUDER

PRELUDE ... 3

1

2

3

INTRODUGCTION. ...ttt ettt e e sae e st e e bt e s beas b e et aesteesteesteeteeseeaseesneeaseeaaeeteenteansensensrenns 4
11 PURPOSE AND SCOPE OF THE DOCUMENTcoitiiitietieitiatiesteesteesiee et s sse s e sseesaeesbeesbeassesssesssesbeesbeeseeennesnnas 4
1.2 DESIGN CONSTRAINTS AND LIMITATIONScottiitietiautiattesteesieesieeseessseseesasesssesseaseessesssesssessesssesssesssesnnes 4
13 DESIGN GOALS. ...ttt stttk ht bt b e st h e eh e e ke e e b e e ebe e b e oAbt £ he e ehe e ebe ekt en b e es b e nb b e nb e e nbeenreeneannas 5

OVERVIEW OF THE APPLICATION ...ttt et st e e e taeanve e ntaeenneeans 6
2.1 PREPARING THE ENVIRONMENTcouttiiiiiiiiieesteesteesreesessressee e steesnesnne e sseesneesneeneesseansesnsesneenreenneenneannas 6

2,11 DEfINING thE APooeeeieeee ettt ettt ettt et eneens 6

2.1.2 CONSIPUCHIG (A GAME. ...ttt ettt ettt ettt et e e et e et e e ettt e nee e nee 6

2.1.3 COnStruUCtiNGg QM QRIMALIONccueeieeieet ettt ettt ettt et ettt ettt nee 7
2.2 PLAYING THE GAME ...ttt ettt sttt bbb et e e bt bbbt e e ne e e b e s bt eb e e b e e e ennennenne b ane s 8
2.3 VWATCHING THE ANIMATION ...ttitieutiasteatiestaesteestessteaseeaseesseesseesseassesssesseestesstesssesssesssessessseessesnsessessenssenns 8

USER INTERFACE DESIGNooiiiiiiiie ettt ettt sta e ta et e s e nnaestaesraesenenteannas 9
3.1 PLAYER MAIN IMENU DESIGN ...ttt sttt ettt ettt sttt et ae e sae e sbe ettt asbenbsesbeesbeenneeneaneas 9
3.2 EDITOR DESIGNuiiutiitiiitie ittt sttt sttt etttk be e b e e be e be e ae e e he e eb e e ebe e bt ea b e eh b e sb e e nbeenbeebeaneeennesaeenbeenes 11

3.2.1 Adding a User DiSplay MESSAE..............cccccccueeioiiminiiiiitiiieeeesee ettt 14

3.2.2 YeRi’ LOOI-COMMEANAccc.oooeeeeiiiiieeeie ettt ettt e e st e s e e ebeesabeeesbeenasee s 15

3.2.3 AKLAT LOOI-COMMUANA. ...ttt s eeabe e ebeenaree s 15

3.24 AC TOOI-COMMANAoooooeeeeeeeeee et 15

3.2.5 ‘Arag Kutusu’ SUD-WINAOWooeoeeeeeeeeeeeeeeee e 15

3.2.6 ‘Eklenmis Nesneler’ SuUb-WInAOWccccooiiiei oo 16

3.2.7 “Ozellikler” SUB-TWIRAOWcocooeoeeeeeeeeeeeeeeeee e 16
3.3 WIEWER DESIGN ...ttt sttt sttt ettt et e b nbe e te e me e s ae e ebe e eb e e bt en bt es b e st e e nbeenbeenbeeeeaneas 16

SYSTEM OVERVIEW ...ttt ettt te e s ae e s ae e te e been b e e st e et e staesteesteesteeneeaneas 17
4.1 USER INTERFACE (1.0) vttt bbbt sttt ettt 19

411 Input HAnAIING (1.1) .c..coooooiiiiiiiiiiiii ettt st 19

4.1.2 Output INtEGration (1.2)........ccccueouimiiiiiiiiit ettt 20
4.2 GRAPHICS ENGINE (2.0) ...ttt bttt b et sb ekttt e e et et sb e b et ene et e nbenbe b 20
4.3 Yo N sl =N] [N = (250 OSSR 20
4.4 F AN I = T [N = 0) IS 21
4.5 =]l N e 1N = 5 AN) SRS 22

451 Program COre (5A.1)......coocooi ittt ettt 22

4.5.2 Data CalCULAIONS (5A.2)......c.ooccueeiieeeiieeieeee ettt ettt eae et et e e stae e etae et e e saaeetaeasaeesseeseeenes 22

4.5.3 Command CONSUMET (5A.3) ..cccvevieiiiieiiiiieeeie ettt ettt ettt eae e etb e et e staesaeense s 23
4.6 VIEWER ENGINE (5B.0) ...ttt ettt ettt 24

4.6.1 ACtON TTIGETS (5B.3) c.oooveieieieee ettt ettt ettt 25
4.7 FILE MANAGER (8.0) ...ttt ittt sttt bbbttt b e bbbt e e e e b sb e b e bt et e e neenbeneeabe e e 25

G701 SAVE (6.1) .ottt ettt ae ettt et eeat et e ettt erean 25

4.7.2 LOAA (6.2) .ottt ettt a ettt ettt ne s 25

4.7.3 Load Model and SOUNT (6.3)cccueovuiieiiiiiiieeee ettt v e ebe e v e beeeanee s 25

4.7.4 EXPOFt ANIMALION (6.4) ..ottt ettt ettt 26

DATA DESIGN ...ttt s ettt e et et e e s te e e be e e tee e bee e teeanbee e teeanteeesteaanbeeataeareeans 26
51 CLASSES. ..tttk etttk h ettt h et bbb b h R R bR R R R e R R R R R R e Rt R e Rt R Rt Rt R et ennenn e r b ene s 26

511 VISUGIODBTECE CIASS ..ottt e ettt et e s 27

5.1.2 HUIMAN CLASS ..ottt et e e st e e e e st e e e aaeeesbaeeabeesabeennseessbaenaseessbeennseens 27

5.1.3 VERICLE CLASS ...ttt ettt b ettt be e be s e ss e eateeteeeseesbeenbeensesneeens 27

514 StALICODJECLS CLASSoocvveiveeeii ettt ettt ettt ettt aeesse s easeetsestaessaense s 28

515 TFAIJIC CLASS ..ottt ettt ettt ettt ae ettt ae e s 28

516 BIUCATEA CLASS ...ttt ettt ettt ettt ettt 28

5.1.7 USE MESSAZGE CLASS........ocuveceveiieiieiieeee ettt ettt ettt et aeeeaeesse s e enseessestaeseenses 29

51,8 BASCADD CIASS ...ttt ettt a et ettt b s 29
5.1.9 GAIE CLASS ..o e e ettt ettt e e e e e e 31
5.1.10 ANTMALION CLASS ... e et 32
5.1.11 MAPD CLASS ..ottt 33
5.1.12 ROGA CLASS ...ttt ettt e e 34
5.1.13 ROGASEGMENT CIASS........ceeiieiiiee ettt ettt 34
5.1.14 PO CLASS ..ottt ettt ettt e et 34
5.1.15 FileManager CLASSccocoiiioiiiiiieeeeeeeee ettt ettt 35
5.1.16 USEFIRIEHSACE CLASS ..ottt 36
5.1.17 V@CTOT2 CLASS ..ottt e e e e e e e 36
5.1.18 V@CIOF3 CLASS ...ttt 36
5.2 FILE FORMATS ...ttt ettt ettt ettt e et e e s stb e e e eabbe e e ebtee e e sabeeeeaabbeeesataeeesabeeeesbbeeesanteeeennnees 37
5.2.1 MOEI FTLES ...ttt ettt et e e 37
5.2.2 ARIMALION FILES ... e ettt 39
5.2.3 GUAINE FILOS ... et 40
5204 MAP FILES ..ottt ettt ettt ettt nean 41
52,5 LOQ FIlES ..ottt ae ettt et nt ettt enean 41
5.2.6 Storing Files il “ar” FOFMQALccccccoioiiiiaii ettt 41
SEQUENCE DIAGRAIMS ...ttt sttt s he e s ae e et e e be et e e st e s bt e staesteesteesteereennes 42
6.1 SEQUENCES RELATED TO USER INTERFACEvviiiiitiiieiettieesiteeesette e e staeeessabeessataesssnsaessssssesessnsessssnsens 42
O.1.1 RUICE ... 42
6.1.2 Load ARIMALION / GAME..............c....ooceeeeeei e 43
6.1.3 Convert Animation t0 .QVI JOFMQLc..cccoecueeiueiieeiieeieeieeee ettt sre e se s seae e 45
0.1.4 AA ODBJECE ...t ettt et ns 45
0.1.5 CAPIUTE ...ttt 46
6.1.6 Save Animation or GAME FIle..............cc..couuoiiiiiiieeeeee ettt 47
6.1.7 Play Selected MESSAZE.cccccccuevuiiiiiiiiiiiiieeee ettt ettt 48
0.1.8 Displaying ARIMALIONScoooueiieiiet ettt ettt e ettt et te e e eneeeeeennis 49
0.1.9 PlAYING GAMES.........ocueeeeeiee ettt ettt ettt et e et ekt e bttt et eneene 50
SOUND EFFECTS DESIGNoiiiiiiiiii ittt ettt ettt e e s s e st e et e e e e s s st e b e s e e e s s seabbeaaeeeeeaas 50
ARTIFICIAL INTELLIGENCE DESIGN.....ooiiitiiiietit ettt ettt ette sttt s s svae e erba e s seatan s sares 51
ADDITIONAL CONVENTIONSottt ettt et e e s e e e s s sb b e e e s aab e e s s st e e e s st be e e sanraeessrres 53
9.1 VIRTUAL SD WORLDuviiiiitiii e ettt ettt e ettt ette e e s et e e e ettt e e e st e e e s ebbeeeeaabaeeesabaeeesbbeeesasteesesabaeeestbeeennns 53
9.2 CAMERA IMODESeoiiittie e ettt ettt e et e e ettt e et e e s e bt e e e e eate e e e sabeeeeabbeeeabaeeessabeeeeaabaesesnbreeesatbeeesantaeeesanees 54
Q.21 EIOF ... e 54
922 VECWEE ..o 54
9.3 FRAME RATE ISSUE IN GAMES AND ANIMATIONSooiiiitiiieeiitieeeeitreeeesteeeeateeeessseeeesssbseeesstveeessssasessnnens 55
9.4 TRAFFIC DENSITY ISSUES ... ittt e iitiiie ittt ee e ettt ettt e s ettt e e e et e e e s te e e e s e tbe e e e aatae e e sabaeeeabbeeesasteeeesabaeeesnseeeennns 56
9.5 IMPLEMENTATION OF IMODULESeeiiiitiieiiieee s ittt e e siteeesttee e s sttae e e s staeeesnsneeessnsaeaesssneeesnnsnsesssnneesssneeennns 56
(O10]) (01 I] 10] 1 T 56
F N o = N | 5] OO 57
11.1 APPENDIX A — CLASS HIERARCHY AND RELATIONSieiieeiiiieiieestteesieeesiveesneessneesnneessneessneessnessnsnessnens 57
11.2 APPENDIX B — GANTT CHART Loiititiiie ettt ste ettt stte e s e e saeeestb e e saaeestbeesaeeestbeesaaeessbeeaneeessbeesneeessseeanneesnreas 58

PRELUDE

After the review of our initial design report, we have made some corrections and
changed some parts. These can be summarized as:
e Claoss structure is reviewed.
o Name of the class “Message” is changed to “UserMessage”.
o Traffic class is explained clearly.
o0 Blue Area class is explained clearly.
e Use case scenarios are fixed.
¢ New design approach for processing user commands.
0 Produce / Consume method is applied.
o DFD’s are updated.
o System overview section is updated.
e GUl designis updated
o0 Adding a user display message GUI is made.
o GuUI for viewer is designed again for a friendlier look.
e New design approach for frame rate issue.
¢ Explanation for traffic density factor is added.
e How fo convert to/from a “.tar” file is explained.
e Schedule is made for the second term including implementation and testing.
¢ We have found a solution to checking the movements of user in games.
e Detailed explanation of camera modes is added.
e Sequence diagrams of displaying of animations and playing of games are
added.
e Sound effects design made more detailed.

e Artfificial Intelligence usage is explained in more details.

1

INTRODUCTION

“Anka Trafik” provides an editor for educator and an application environment for the

learner. It is a tool designed for traffic education for primary school students focusing

on age above ten. The details about the application have been told in our

requirement analysis report.

1.1 Purpose and Scope of the Document
The purpose of this report is to explain the details of our design approach to our

application “Anka Trafik”. These details are basically about the relations and

interactions between the components of the overall structure. Parts of the system

architecture which are explained in this document are:

The data flow between different parts of the system

The file types that we will be used

External libraries and sources that will be used

Detailed description and specification of the modules and the classes
Event handlers

Integrating Artificial Intelligence

1.2 Design Constraints and Limitations
Besides the time limitation important limitations are:

User environment: The current technology used in end users’ computers
determines our program'’s ability. Our end users are teachers and students and
the environment is generally schools and the students’ and teachers’ home
computers. Thus we have to consider end user environment in order to

determine the capabilities of our tool.

External libraries and tools: We are using software tools and libraries like Ogre,
OpenSteer, etc the limitations in these can directly affect our design. As a result
of our search about the external tools we fried to select the ones which have
all of the functions we will need. Thus, we will not spend much time integrating

them.

Experience on external tools and libraries: Many of the tools and libraries we
will use are not familiar to us. However, as a result of our survey we have got
familiar to them. During the prototype creation we wil have a deeper

understanding of these tools and environment.

1.3 Design Goals
In order to create a high performance and useful tool the following goals will be the

basis of our developing manner:

Performance:

Since graphics is the base of our software application, we have to consider the
performance problems in a detailed manner. In order to avoid future
performance problems, we would try fo determine the best frame rate for the
running application. The frame rate calculations will be carefully done. We will
also determine the data structures that we will use in a way that high
performance speed is as optimized as possible.

Well organized code:

By the help of using C++, an object oriented approach; we are planning to
create a well organized code. As a result of this, our tool will be easily
maintainable and extendible.

Usability:

Creating an easy to use tool is one of our main aims. Because of the fact that
the end users are teachers and students, their computer knowledge is limited.
Another usability condition is the complexity of learning the tool. Our aim is to
develop a tool that is easy to learn how to use.

Reliability

The tool will be tested in every part of the implementation phase, thus crashes
will be tried to be avoided.

Satisfying user needs:

Most important area that our tool will be used is the school. Thus we have to
consider the needs of teachers while he/she is using the tool. The general

needs of a feacher are:

0 Creating all possible scenarios in traffic education of children:

We are enabling user for creating possible scenarios by not doing our
development scenario based.

o Evaluating the children:

Our tool will make this possible by supplying a file which contains the
number and types of the errors that has been done by the player or

watcher during the animation and game.

2 OVERVIEW OF THE APPLICATION

In order to use the tool there are two phases:

First the teacher prepares the environment or the animation

Second the learner watches or plays the prepared game or animation

2.1 Preparing the Environment
The person who prepares the environment must:

211

or

21.2

Defining the map

Edit predefined animations or games as a starting pattern by opening.

Create a completely new map by opening a new map
Define the traffic rules which are aimed to teach and find the related traffic
signs by selecting from predefined ones in the tool. For example:
o Traffic lamps
o Pedestrian crossing
o Overpass, etc.
Insert the selected objects
Then according to the choice, game or animation creation, follow one of the

following ways:

Constructing a game
After creating the basic map, educator should determine the path for

pedestrians and vehicles by using the mouse. Also, he/she should determine

the density of them.

213

Define the role of the learner and the role must be explicitly written in the
mission part.
o Mission part will be displayed at the beginning of the learner’s session for
learner to read before starting to play the selected game.
Define start and end positions related to the defined aim
Choose a character that will be controlled by the learner. The character can
be one of the following
0 A person as a pedestrian
0 A person using a skateboard
0 A person using a bicycle, etfc.
Define possible mistakes that a learner can do related to that rule.
Define the “Blue Area” that corresponds to the mistake like crossing the road in
a wrong place. “Blue Area” is the coordinates of that wrong crossing place for
example, and in case of entering that area we detect the mistake.
Define the message that will be passed to the learner when the mistake
OCCuUrs:
0 Message can be constructed by recording someone'’s own voice or
displaying a written message.

Then saves the environment created

Constructing an animation
After creating the basic map with static objects, educator should add the

objects he/she will use for the animation. He/she will do that by determining
the frames of the animation.
Define the frames

o Select the object

0 Assign a task to the object

o Choose the start frame of the task which is the current frame

o According to the task give the parameters using the mouse or the

keyboard

Define questions which will appear during the animation

Define the message that will be passed to the learner during the animation
with the frame it will appear. Messages can be

o One of the questions defined or

o Information about the rule that will be stressed

Then saves the environment created

2.2 Playing the Game

User first selects the game which he/she will play by browsing from the existing
ones.
After the selection the game starts
Player controls and directs character in the game in order to get to the end
which is mentioned in the mission part. Except the character, there will be no
controllable object in the game. However, many of the objects will have their
own arfificial infelligence.
When the player starts the game and does a mistake by not obeying one of
the defined rules, he/she gets an error message defined by the teacher.
After the error message is appeared, the player returns to the position in which
he/she was just before the error is occurred.
When the player gets to the destination, the game finishes.
After the learner gets to the end position, a “.log” file will be created.

o This file will include the mistake and how many times that mistake is

done. The mistake definition includes not obeying the defined rule.

2.3 Watching the Animation
The basics and properties in the animation part are:

The watcher first selects the animation that he/she will watch by browsing from
the existing ones.

During the animation, questions prepared by the teacher will appear as a
popup to measure.

The watcher will answer the question and after that he answered the question

he/she will continue to the animation.

o After the learner watched all of the animation and answered all of the
questions defined the animation finishes.

e Then, the tool will form a file which contains the feedback about the pop-up
questions’ answers. This feedback will include the answers that were given to

the questions by the learner.

3 USER INTERFACE DESIGN

There is going to be two executables. One of them gets user information, takes user
request, then starts the viewer for an animation or a game. Other serves an editor for
user to make a game or an animation. The following subsections explain the interface
designs for these two executables. The figures we illustrated there are not the exact

forms in final product. They just generalize the user-computer interface.

3.1 Player Main Menu Design

The below figure illustrates the login form and starts a game or an animation. Some
user information, student id or name, will be taken. This information will be used in
messages given to the student for encouraging. All animation and game files are

kept in a directory, accessed from there. They are accessed by this menu.

ANKA Trafik Egitimi

Main Menu for Viewer

As we stated in our requirement analysis report when the animation ends, an
information screen will appear which will tell the user about the point user has taken
from questions. The below figure illustrates this screen. Within the evaluation report

grade, user predefined comment, the mistakes can be shown.

10

Degerlendirme Rapuru

Fullanic) Adi

Rapaor:

Report Window

3.2 Editor Design
The below figures illustrate the general structure of our editor, and the main difference

of two process modes (edit animation and edit game processes).

11

ANKA Editor - Oyun Hazirlama |Z”E’E|
Dosya Yardim

Yeni . H @ x
:
Kaydet
Farkl Kaydet
Insanlar = Ozel
Cikis | Yollar ve Isaretler | Araglar | Cewre

Eklenmis Nesneler

[+ insanlar
Cocukl
Adaml
Cocuk2
Aradar
+ Arabal

Ozellikler

Game Editor

Instructor can make an animation or a game within a single editor. However, there
should be a mechanism to know the current application on editor (i.e. whether the
user is making animation or making game). We should know this because we give
more rights to the user of the editor on making animation but limited rights on making
a game. For example, with game editor user can assign a main character and give
him/her start and end position (where he starts his action and where he finalizes it);
with animation editor user just sets the actions of characters in the interval between

start and end position; however with game we take this information from player.

12

Settings on such actions are done with properties subpanel, so it should be different
for an animation and a game; and we should know the active process to make it

different.

ANKA Editor - Animasyon Hazirlama

Dosya Yardim
Yeni 3 H * x
:
Kaydet
Farkh Kaydet
Aktar B Insanlar = Ozel
Cikig | Yollar ve Isaretler | Aradiar | Gewre
Eklenmis Nesneler
53] insanlar
Cocukl
Adam1
Cocuk2
[c2! Araclar
Arabal
Ozellikler
[Bag.a Git} [Bir Onoeki] Bir Sorraki H Sona Git]

Animation Editor
There would be a ruler to cross the frames on 3D view subpart of the editor. This would

not include rendering. It just changes the frames. So it uses only graphics and Al to

show the objects in correct places. The ruler is going to be set only for the animation

13

because the next frame is going to be determined by the player at the time of game

play.

During the usage of editor, the user can add objects to the 3D view part by changing
the camera view using the controls with the keyboard. These controls are:

e CTRL + Arrow Keys : to move the camera’s look at position

e Arrow Keys : to change the camera view without changing the place,

only by changing the angle

3.2.1 Adding a User Display Message
After selecting the frame, user can add display messages for students to help, to give

a warning or to ask a question. When user wants to add a message following window
opens:

Anka Traffic - Mesaj Ekle [;]E]

A

Mesaj / Soru

O | Secenek 1

O | Secenek 2

O | Secenek 3

@ | Secenek 4

Sesli Mesaj
@Seskaydet[Kaydet H Durdur H Dinle]

O Ses dosyasi al

14

To add a sound message user can either can record a .wav file by the check box ‘Ses
kaydet’ or import from a .wav file by the check box ‘Ses dosyasi al’ by browsing the

file.

Adding a sound is optfional. However, all messages must have texts. These texts can
be either questions or warnings. When the user wants to add answer options to the
questions he/she can use the text boxes with radio buttons. He/She should choose the

right answer by selecting the radio button next to the answer.

3.2.2 ‘Yeni’ tool-command
If user has done some animation; decided to stop working on it and wanted to

prepare game, he changes the animation and game selection on editor. We
aftached this selection from toolbar on ‘yeni’ tool-command. Clicking on ‘yeni’
causes a pop-up menu which includes 2 options: animation or game. Any other
selection causes the editor to be reset and the ‘mode’ variable to change. Before the
reset, user is asked for savings, and then the initial configuration for game is set. The
same editor exists for animation and game. The difference is the scene on its sub-
panels. For example, on a change from game to animation 3D view subpart is

cleared.

3.2.3 ‘Aktar’ tool-command
This fool command is active on animation mode. It is used for converting animations

to “.avi' format.

3.2.4 ‘A¢’ tool-command
Lists the saved animation and game files. User makes an animation or game selection.

It works like ‘Yeni' tool-command. But this fime the editor is set with respect to the

selected animation or game instead of the editor’s initial configurations.

3.2.5 ‘Ara¢ Kutusu’ Sub-Window
For each 3D model we designed, there is a thumbnail image on the panel. These

images are grouped in tabs. They are grouped into human, special, vehicles,
environment and roads and signs objects. The objects added are seen from 3D view

part of editor.

15

3.2.6 ‘Eklenmis Nesneler’ Sub-Window
This sub-window shows the objects that are added before. Using this sub-window and

clicking the previously added objects, user can select the object and view the

properties in the “Ozellikler” Sub-Window.

3.2.7 ‘Ozellikler’ Sub-Window
This sub-window shows the properties of the selected object. Thus, the user can modify

the object easily.

3.3 Viewer Design

The below figure illustrates viewing an animation option of our tool. The user first
selects the animation from available ones by clicking on the “"Ac” tool command.
After the selection the animation is ready to run by clicking on the “Oynat” button. At
any time during the animation the user can stop the animation by using the timeline
bar. There is a “Cikis” animation option for exiting.

Anka Traffic - Animatbon

Cosya

fL

Baslar Aaglal

OYNAT DURCUR

Animation Viewer

16

The below figure illustrates playing the game option of our tool. The user first selects

the game from available ones by clicking on the "Ac” tool command. After the

selection, the game is starts to run. There is a “Cikis” animation option for exiting.

Anka Traffic - hame

4 SYSTEM OVERVIEW

Game Viewer

Keyboard

Mouse

User

Display

Education

LEVEL 0 DFD

Model data

Model Re pository;J

User Files DJ

Traffic

Animation/Game Data

Suite
0.0

Animation/Game Data

17

Our application is composed of two parts: Editor and Viewer. The difference between
these parts is one of them is used for creating animations and games; the other is used
for viewing these animations and games. Beside this difference, they can be thought

as almost same in the means of program's internal processes.

As we see in the above graph, our only external entity is the user of the program. The
user sends its requests by mouse and keyboard. And he/she gets the output from
speakers and monitor of its computer. The details of the user interactions are

described in user interface section of this document.

Also we have a data repository to hold 3D models and sounds (environmental sounds)
that will be used in the game. The user files are simply the data that user saved for
later use (to edit in the editor again, or to view in the viewer). It is just the working
folder of the user and it can be anywhere in the computer or on a removable media.

All file formats are described in file formats section of this document.

The internal logical architecture of the program can be represented as below:

LEVEL 1 DFD
Frame Input
Sound data
Display Data
Keyboard Sound data
/—\ Model data /_\
gy
Mouse U Sound Graphics
== Engine Engine Model RepositoryJ
User Interface 30 50 iz Model data

Animation/Game Data

Module Manager
Sound 1.0 6.0 Animation/Game Data
Sound Data
Display)
gs r Bra e SaveData \ User Files J
Program eRuests ironment Data & LoadData
State o~

Object Behaviors

Editor Viewer
Engine Engine
5A.0 5B.0

Al
Engine
4.0

Environment Data

4.1 User Interface (1.0)

We are using CEGUI (Crazy Eddie's Graphical User Interface) manager for user
interface. Actually we planned to use windows API, but later we see that CEGUI is very
suitable for using with our graphics engine (OGRE3D). In CEGUI manager, the overlay

of the interface is designed before coding the program, then this overlay is imported

in the initialization of the program.

LEVEL 2 DFD
USER INTERFACE (1.0)

User

Requests - .
,//—'" Editor Viewer

Engine Engine
5A.0 5B.0

Keybear!

M

Input
Handling
1.4

Program

User State
Sound Frame Input
Graphics
] Output Engine
Display Integration / 2.0
1.2

Display Data

Sound
Engine

S0
Sound Data

4.1.1 Input Handling (1.1)
Input handling is done by callback functions of user interface elements. These

callback functions are subscribed during initialization of the user interface. The mouse
and keyboard events will be produced by frame listener binded with OGRE window

and these events will be consumed by Editor/Viewer Engine.

19

4.1.2 Output Integration (1.2)
Output integration is simple. The windows of user interface will be showed according

to program state. And one of these windows will be binded to Graphics Engine
(OGRE3D). The integration of sound with display will be automatically done in

hardware level (play functions of sound engine, OpenAL, gives sound directly to user).

4.2 Graphics Engine (2.0)

As we stated before, we will be using Ogre3D graphics renderer as our graphics
engine. The ogre engine is used by creating an application object of Ogre class and
calling its go function. Then rendering process will continue until we close it. So we will
initialize our program (load necessary data) before calling ‘go’ function. Rendering
can be stopped in the frame callback functions of Ogre frame. These callback
functions are called after every frame is rendered and before every frame is

rendered.

Actually our user interface will be an Ogre frame. Our 3D view will be a child frame of
the user interface frame. When 3D view frame interacts with mouse, its frame listener

will be activated and response the action.

4.3 Sound Engine (3.0)

We will be using OpenAL as our sound engine. OpenAL is a powerful tool for using
sound in applications (like games), but we are not making a game and do not need

the complex features of the engine. We need the engine only in two places.

One of our usages is giving environment sounds to the user so that a child playing a
game will be able to hear the cars around. This feature will be done simply by calling
play functions of OpenAL. The car and other environmental sounds will be hold in

model repository.
The second is the message facility of our editors. The teacher will be able to add

sound clips to screen messages. This feature will be maintained by calling record

functions of OpenAL. The sound data will be saved into the animation/game file.

20

We are not interested in other features of OpenAL (like 3d sounds, complex sound
effects, etc). We simulate the 3d sound effect by calculating the distance between

the cars and user, and adjusting volume with respect to distance.

OpenAL uses OpenGL like engine. After initialization in the beginning of the program,
it starts playing when we call ‘play’ and stops when we call ‘'stop’ function. So we do

not need anything to integrate it with Ogre, but calling the functions in idle times.

4.4 Al Engine (4.0)

We will use OpenSteer library for artificial inteligence purposes. OpenSteer is a
specialized library for determining steering behaviours of automatic objects. We wiill
use it for determining car behaviours and pedestrian behaviours (other than the main

character in games).

Initially we will define a terrain map (terrainMap class) in the engine. This terrain map
determines where the objects can go where they can not go. Actually this map can
be thought as a virtual model of our map data. Later we will add the road data to this
object by the Route class of the engine. This route data determines the normal path
of the objects (the roads of our animation/game map). Our cars and humans will be
inherited from SimpleVenhicle class of OpenSteer and will be binded to the terrain
map. Later in game or animation, at each idle time interval, we will predict the next

behaviours of all objects by calling this terrain map.

In game editor, we will not use artificial inteligence. In animation editor and
animation viewer, we will use it for calculating future frames (since we hold the
behaviours only, we need to calculate every time we watch the animation. In games,
the random movements of pedestrians and cars in traffic are calculated by the

engine.

21

4.5 Editor Engine (5A.0)

Editor Engine is the main part of our program when the program is started in editor
mode. All of the calculations that are done is in this part and later passed to the other

engines.

Editor engine is not defined as a class or function. It is the combination of all other
function calls before rendering, and during rendering. So we can say that it is our
entfire program other than external libraries (sound engine, graphic engine, Al

engine).

4.5.1 Program Core (5A.1)
It is the part of the program that holds all data of the program, like current animation

or game data, time information, program states. When the program starts, core is
initialized. When new data exists, the core must be updated. It is the combination of

global variables and functions that manipulates this global data.

User interface learns what to show by interacting with this part (program state). User

interface callbacks (user requests) changes the state by triggering update functions.

When user wants to save or load data, File Manager interacts with this part to get or

set the data.

4.5.2 Data Calculations (5A.2)
At every step of our program, like user actions and frame rendering, we need to

update positions of the objects and the data related with animations or games. This
part of the program calculates the necessary changes, updates core data, and

triggers the necessary functions from other engines.

After every frame, the program data (program state and environment data) is taken
from program core. Then, all object data is passed to Al engine and future
movements (object behaviours) are predicted for objects. Later, if necessary,
program core is updated (data update). Finally, the changes in graphic and or sound

engine is calculated and passed to the sound engine and graphic engine.

22

This part contains all of the functions, examinations that are done at every idle fime

interval (in frame callbacks of graphic engine).

4.5.3 Command Consumer (5A.3)
The user commands that are caught by user interface are processed by this part. It

will run as an independent thread so that for complex actions, our program doesn't
freeze. It will process the commands one by one in the order that commands

created. The necessary changes will be passed to the program core.

LEVEL 2 DFD
EDITOR ENGINE (5A.0)

Command
Consumer
5A.3

User
Requests

Program
Response

User Save Data

Interface
Module
1.0

File
Manager
6.0

Program
Core

Program
State

Load Data

Program

Environment State

Sound Data

Environment Data

Environment Dat
Al

Engine
4.0

Calculations
5A.2

Object Behaviors
Environment Dat

Graphics
Engine
2.0

23

4.6 Viewer Engine (5B.0)

This part is almost same with editor engine. The only difference is action triggers (5B.3)

module.

In games, the user (child) will wander in the virtual map (our 3d world). The main
character of the game (the object the user controls), may encounter some special
conditions (like violating a traffic rule or stepping on a user defined area, which is
defined by teacher by adding blue area to the map). Also in both games and
animations message screens will appear and wait for user to interact with these
screens. In both of these two conditions, the program behaviour must be changed to

reflect the effects of these conditions. Action triggers deals with these situations.

—, ,_/;

Graphics
Engine
20

= T:lame

— Sound Data ’_.--';"" Data " Data
— Updala e
Sound - 1 e e
Engine |
a0 - Envlnonrnem Daih IIr
Data
Calculations

Environment Da(a -~

5B.2

\
Actlon).’ Action
Data J Requests

Actlon
Triggers
5B. 3

LEVEL 2 DFD
VIEWER ENGINE (5B.0)
Command
User Z; - C:onsumer
Requests - 6.4
/./' 3 ._
P Program \
,.-/_‘"“" - Response \\.

User | Save Data pr-——
Interface > R T File
Mﬁdgle Program \ Manager

— — = Core 11 | 6.0
_— ogram | 5 —
State sl \"\" Load Data .
! /"'f;“ | .."\\
_l,r En\ﬂmn
En\rllonrnenl Data

Objecl Behawors

24

4.6.1 Action Triggers (5B.3)
In viewer engine's data calculations, different from editor engine, all above conditions

must be checked by calculating the main character's position (in games) and time (in
animations). If any found, this is passed to action tfriggers (action data). Then, the

necessary commands are produced to be consumed by command consumer (5B.4).

4.7 File Manager (6.0)

File manager is the class that contains our file related mechanisms. It will be
implemented as a namespace in our application. The file formats are not described in

this part.

4.7.1 Save (6.1)

When the user wants to save a game or animation, it is maintained by this module.
Also when a game or animation ends (in viewer mode) the log of the game or the

animation is saved to the default folder by this module.

4.7.2 Load (6.2)
When the user wants to load a game or animation, it is maintained by this module.

4.7.3 Load Model and Sound (6.3)
This function loads a model or a sound from model repository. This function is needed

by graphic engine and sound engine.

25

LEVEL 2 DFD
FILE MANAGER (6.0)

Sound data

Sound data o

e S Luad \{ ; ‘-‘-‘-"'"—-.._‘_
— Model
SRR and T

Model data

Sound i i :
e S— Model Repository

_ ——
Mode! data _ '() e _1
Save o

’ i
Animation/Game Dala s y
i /

Graphics P
Englne f T
Save Data , \‘ll ; - __/
i -~
_/ Load Data L°aﬂ 7 e
/ AmmahuruG’ame Data
,/
Save.DaIa 5 -~
Editor Viewer
Engine Englne
5A.0 5B.0

4.7.4 Export Animation (6.4)
In animation editor, user is able to export animation. In this function we use the audio

and video libraries of ‘ffmpeg’ multimedia system. The libraries ‘libavcodec’ and
‘libavformat’ libraries of ‘ffmpeg’ provides necessary codecs and tools to combine
screenshots taken from graphics and then combine it with the sound recorded by

sound engine.

5 DATA DESIGN

5.1 Classes
In this part of the document, the data structure we are going to use in our project is

explained. Beside the classes we will use from libraries we have designed many
classes. All of these classes have ‘set’ and ‘get’ functions for every attributes which

are not told here. Other properties of these classes are explained below.

All other relationships between classes are displayed in a diagram which is at

Appendix A.

26

5.1.1 VisualObject Class
This class is mainly the base class for our objects. All other objects except “Road”

object is inherited from this class.

It stores the main properties of an object like the position and direction of our object in
our 3d world. Also, model flename is stored here. ‘objectName’ is unique for every
object. The instances of human, vehicle, staticObjects, Traffic, or BlueArea classes are

distinguished by ‘objectType’.

OpenSteer:: VisualObject
SimpleVehi FobjectPasition - Vector2
cle l-objeciDirection : Vector2
el
~objectMame : string
l-objectType
+zethModal()
Human Vehicle StaticObjects Traffic BlueArea
FsecType : string -type - int
+walkiin v 2 Vector2) void | [+gofin v @ Vector2) @ void -message | Message
+runiin v - Vector2) © void HizActive()
Hrotatelin v : Vector2) : void
Hook{in v : Vector2) : void

5.1.2 Human Class
This class uses multiple inheritance and is inherited from our VisualObject class and

OpenSteer’s SimpleVenhicle class. SimpleVehicle class is used for Artificial Intelligence
and guessing the next positions of the objects, thus we had to inherit our class from

that. Moreover, this class has some extra methods to control our object.

5.1.3 Vehicle Class
This class also uses multiple inheritance like Human class. It is inherited in the same way

like Human class. In this class we have an extra method to drive our vehicle to the

position we give.

27

5.1.4 StaticObjects Class
This class is inherited from VisualObject class and defines the static objects in our

program. These objects can be listed as: buildings, trees, etc. We do not need any
special method for this class because they will be positioned and will not move untfil

users decide to edit the object.

5.1.5 Traffic Class
This class is also inherited from VisualObject class. We designed such a class in

addition to designing StaticObjects class since some nonmovable objects needs
some special method to apply a ftraffic rule. So, addition to the properties of the
VisualObject class, it also stores the information of which traffic object it belongs to.
This information is stored in ‘secType’. We differ traffic objects like roads, sideways,
crossways, traffic lights, traffic signs etc. from other objects and from each other with
respect to the ‘secType’. So we apply different rules to different objects. Rules are
handled with Al.

5.1.6 BlueArea Class
Objects of this class are used for bounding to some places in map. This bounding

place is set in base class VisualObject and taken in ‘ObjectPosition’ variable. This
bounded area also bounds to a display message which is defined by the educator.
Obijects of this class are not visible to students neither in games nor animations but
visible to the educators using the editor. In viewer mode if user places it's hero into @
blue area, then the corresponding message would be displayed. This message could
be a question to the student, a warning, a help statement or any other comment

given from the teacher.

To determine the next behaviour of the program we take a ‘type variable’ of the
BlueArea object which can be either ‘start’, ‘end’, ‘message’, ‘question’. Since for
example if the bounded message is a question, the program will wait in a
predetermined time to take the answer, or if blue area corresponds to ‘end’, then

game will end.

28

‘isActive()’ checks whether it is the time for the BlueArea object to display the

message or not.

5.1.7 UserMessage Class
This class is the one which will be used to display messages to the user. A display

message can also be associated to a sound message. These messages can be

warnings, helps or questions.

UserMessage
-message Type : string
-messageName : string
-soundbuffer
-text : string
+display()

‘messageType’ defines the type of the message which can be either a “question” or

“simple”. “simple” type messages are warnings and helps.

‘soundbuffer’ is the buffer which will be used by openAL for storing the sound either
recorded by the educator or imported from a ‘.wav’ file. Its initial value is ‘null’. Thus
there cannot be any sound messages without texts. Importing from a .wav file is done
by browsing in the file system and loading this file in to soundbuffer using the

loadSound() method of file manager class.

‘display()" method is the method used for displaying the messages.

5.1.8 BaseApp Class
This class is the base class for our ‘Animation’ and '‘Game’ classes. It cannot be

created without using these two classes. It stores the common properties of the other
two classes like ‘'map’ and ‘messages’. ‘mode’ stores the value that tells whether the

objects are in “viewer” or “editor” mode.

29

BaseApp

-map : Map

-mode : int

-allMessages : vector <UserMessage>
-errorCount

+save()

+predictNextPosition()

+addObject()

+removeObject()

Game Animation

-mainCharacter : VisualObject
-startMission : BlueArea
-endMission : BlueArea
-otherBlues : vector <BlueArea>
-pedestrian : vector <Path>
-traffic : vector <Path>

-seconds : int

-maxTime : int

-commands : vector <string>[]
-currCamPosition : Vector3
-currCamLookAt : Vector3

-movements : vector <string> +play()
+keyboardCB() *pause()
+mouseCB()

It has a ‘'save ()’ method for the user to save the animation or game he/she created.
This method calls FileManager's related method depending on the object to be

saved.

‘errorCount’ is stored to give a report at the end of an animation or game about the

progress of the student.

‘predictNextPosition()’ is the method that uses Al with OpenSteer functions. It gives us

the next positions of ‘Human' and ‘Vehicle' objects.

‘addObject()’ and ‘removeObject()’ methods are defined for user to add or remove

objects in editor mode.

30

5.1.9 Game Class
This class is inherited from the ‘BaseApp’ class. It defines the main structure of our

game in our program.

‘mainCharacter’ is the object which will be conftrolled by the student during the

game.

‘camMode’ is the mode of the camera view. There are three modes for the camera
which can be listed as: first person view, third person view and a view far from the

player.

‘startMission’ and ‘endMission’ define the start and end of the game. Game starts with
the player positioned at ‘startMission’ BlueArea. When the player reaches the
‘endMission’ BlueArea the game ends. ‘otherBlues’ vector defines the other BlueArea

objects attached to messages that player can face during the game.

‘pedestrian’ and ‘traffic’ vectors control the density and the flow of vehicles and
people other than the player. They are controlled by Al on a given path that we used

different vectors for them.

‘keyboardCB' and ‘mouseCB’ methods control the movement of ‘mainCharacter’
according to the input by the player. They only work in viewer mode of the game

object.

‘movements’ vector composed of strings and used to detect the consecutive
movements. Control of these movements can be explained as:
In order to detect correctness of the action of the hero we must detect
whether he/she obeys the defined rule or not. We have developed the
following detection way:
e We use a list structure (‘movements’) in order to keep track of the last

consecutive movements of the hero.

31

¢ When we need to evaluate the correction of the movement, we will

examine the list that we have defined and update at each movement

and compare with the correct action order defined related to the
current rule.

For example, we will solve the problem of movements in a fixed area by this

approach which can be detecting the order of looking left and right.

5.1.10 Animation Class
This class is also inherited from Base App class just like Game class. It defines the main

structure of the animations in our application.

In addition to the afttributes of BaseApp class there is ‘seconds’ attribute for us to
control the timeline in our application.
‘maxTime’ is the maximum duration of the animation given by the user at the

beginning of the creation of the animation.

‘commands’ is an array of string vectors and will store the movements of the objects
in our program. The structure of this array is:
¢ Length of the array is defined according to the ‘maxTime’ given by the user
e FEach vector defines the frame at that time of the animation
e Each elementis a vector of strings
e At the beginning of each vector, first two strings are 'camera position' and
‘camera look at' at that time
e Ofther strings will be composed of the name of the object, name of the
movement method of that object and parameters of that method in order,

ending with a delimiter.

32

Time Line P

Camera Position

Camera Look At

Marne of the object,

its command
Marne of the object,
its command

‘commands’ vector

‘currCamPosition’” and ‘currCamLookAt’ are Vector3 objects defining the camera

view.

‘play()" and ‘pause()’ methods will be used by the student during the viewer mode

of the animation.

5.1.11 Map Class

Map

~objects | vector <VisualObjact =
-mapMame : siring

-road ; Rozd

HramovaObject()
+addCbject()

This class stores the objects in our application. Both visual objects and roads are stored

in a map object. It is used by BaseApp class.

‘objects’ is the vector that stores the objects put by the user in editor mode.

‘road’ is the roads defined by the user in editor mode.

33

‘mapName’ is a unigue name defined for the map.

5.1.12 Road Class
This class just stores the segments of RoadSegment objects in a vector. It stores all of

the roads defined by the user in one object to be used by a map.

"
Road . : Path

-seqments © vector <RoadSegment> 5 -segments : vector <RoadSegment=
-density ; float = 0.5

W
RoadSegment
start : Vector2

-end : Vector2

Fobjects - vaator <Traffic=
+oombine)

5.1.13 RoadSegment Class
This class is the main element of a Road object which is a segment composed of

straight roads defined by the user. ‘start’ and ‘end’ values are stored with a Vector2
object, thus any road added to the map can be queried and combined with the

‘combine()’ method.

5.1.14 Path Class
This class is specially designed for the Al to control the movements of objects in a

given path. Just like the ‘Road’ class this class also uses RoadSegment objects to store
the path. Moreover, there is a different attribute called ‘density’ to store the density of
vehicles or pedestrians on the given path. This value is initialized to 0.5 and cannot be

less than 0 or bigger than 1.

34

5.1.15 FileManager Class

FileManager

+aavefnimation)
FsaveGamel)
HoadAnimation(}
HoadGamel)
+exportAnimation()
eavel ogl]
+oadhodel()
HoadSound()

This class is consisted of just methods. No instance of this class can be created. All

methods are static.

‘saveAnimation()’ and ‘saveGame()’ methods are used for saving the animation or
the game made by the educator in the editor. They are stored as ‘.anim’ and

‘.game’ files.

‘loadAnimation()" and ‘loadGame()’ methods are used by both the editor and the
viewer mode. When they are opened in editor mode, user can make changes on
them and make a different animation or a game. On the other hand, in viewer mode,
user can watch the animation or play the game. In viewer mode these methods are
called by the button callback functions in the main menu or animation and game

windows.

‘exportAnimation()’ method exports the given animation to ‘.avi' format using OGRE
functions and FFMPEG. Thus, the animation can be viewed without the need of our
program in any video viewer.

‘savelog()’ method is used for saving the user’s errors during the animation or game.
These errors are saved to ‘username.log’ file in the directory of the animation or

game.

‘loadModel()’ method is used for getting the model from the model repository.

35

‘loadSound()’ method is used to load a given ‘.wav'’ file to the soundbuffer for usage.

5.1.16 Userinterface Class
Userinterface

+setMode
+getMode()
+setFrame])
+oalactObject()
+addObjecti]
+rmObject|}
+changeCamera()
+showProperties()
+aatllsarname)

This class contains the main functions that GUI will use. No instance of that class can

be created. All the methods of this class are static.

‘setMode()’ and ‘getMode()’ methods get the mode of the application and display
the next window according to this mode. These modes are ‘animation’ and ‘game’

mode.

5.1.17 Vector2 Class
This class consists of two floats which correspond to x and z values in the 3D space of

OGRE.

Vector2 Vectord
Lx - float =¥ | float
=y - float -y : float
- ; float

5.1.18 Vector3 Class
This class consists of three floats which correspond to x, y and z values in the 3D space

of OGRE.

36

5.2 File Formats

5.2.1 Model Files
We will draw our visual object models in 3D Studio Max. Then these models will be

exported to Ogre file conventions. Ogre has a tool for that purpose (3DS Max to Ogre

exporter).

Ogre recognizes mesh data in “.mesh” files, skeletal animations associated with that
mesh in “.skeleton” files, and material properties of that mesh in “.material” files.

Exporter will create each file for our models.

Also, in editor mode (both animation and game), we will need a thumbnail of that
model in our object toolbar (so that user can see what will be added to the

environment). These thumbnails will be 100 * 100 pixel long “.jog" files.

There must be a text file (with extension *.desc”) for each model. This file will consist of

one line only (the type of the object).

There must be another text file (with extension “.ixt”) for each model. This file will
contain the text which will be showed in the toolbar (in editor mode) when user

moves the mouse over them.

All models will have a uniqgue name, and all these files will be named with that name
(modelname.jpg, modelname.mesh, modelname.skeleton, modelname.material,
modelname.desc, modelname.txt). Also all of these files will be put in a tar file with

extension “.model” (modelname.model).

And all of models are put in a folder named as “models”. In later post-release

upgrades of the program, newer models also should be copied into this folder.

37

The relation between model files and VisualObject classes
As we stated above, we will read visual data of visual objects. In both editor mode

and player mode, all these objects will be read from files and will be hold as objects
of base classes. Distinction of these base classes is done according to animations and
logical requirements of objects. These base classes are Human class, Vehicle class,
StaticObjects, Traffic, BlueArea classes. Detailed explanation has been done about

the classes in the previous section called Classes.

We can think these base classes as a virtual interface for arranging and animating
these objects. All of visual objects will derive from one of these objects. Therefore, all
models we will read from our model repository, must implement our animation
functions. (Design of our models will be explained in another chapter.) Later in our
application, we will frigger all these animations, by calling the member methods of

these base classes. Here is a demonstration of this process:

Maodel Definition File:
Base Class: =

animation1:

{1}
énimatiom() Animation -
gty call

Animation Data

Graphics Engine:

Model files will only contain visual animations. Other calculations (such as

transformations due to animation) will be in base class methods.
Human Class:

Human class is infended for any walking object on the map. Both children and adults

are objects of this class. The detailed information about this class is given classes

38

section of this document. The models designed for objects of this class must
implement these animations in 3D Studio Max:

o walk

o run

o rofate

o

look (looking in a direction without moving)

Vehicle Base Class:

Vehicle class is intended for any vehicle that moves on the road. Buses, cars, children
with bicycles are objects of this class. The detailed information about this class is given
classes section of this document. The models designed for objects of this class must
implement these animations in 3D Studio Max:

o go

5.2.2 Animation Files
Animations are hold in a “.tar” file called “AnimationName.anim”. These tar file

includes other files for the data of animation. These files are given below.

“AnimationName.txt": This file is a text file that contains the length of the animation in

seconds in the first line.

“AnimationName.timeline”: This file is a text file. It contains all animation details. The
lines starting with “#N:" indicates that the lines below that line are the commands that
must be executed in the Nth second, until the line starting with “#N+1:". Each line,
after that line, is a command string. The structure of command strings are described in

Animation class.

“AnimationName.map”: This is the file for the map that animation is built on. The

structure of this file is given below.

In addition to these files, there is a folder with name “Messages”. In this folder, there

are two files for each message in the animation.

39

“MessageName.ixt”: It is the text of the message with name messageName.

“MessageName.wav": If this file does not exist then it means that there is no sound

recorded with that message. If exists, it is the sound clip associated with that message.

5.2.3 Game Files
Games are hold in a “.tar” file called “"GameName.game”. These “.tar” file includes

other files for the data of game. These files are given below.

“GameName.txt": This is a text file. The first line of this text file includes the name of the
object, which is set to be the main character in the game. The second line of this
folder is the name of the BlueArea object in which the main character of the game
starts playing. The third line of this folder is the name of the BlueArea object which the

game ends when main character steps on.

“"GameName.map": Exactly same as animation case.

“Messages” folder: Exactly same as animation case.

“GameName.blue™: This is a text file. Each line describes a blue object. In each line
there are numbers and string which describes the object in this order (ObjectName,
ObjectPosition, type, Name of the bounded message object)
“GameName.pedestrian™: This is a text file. Each line describes a path. First number is
the float value which describes the density of pedestrian traffic. The numbers coming
after are the starting and ending vectors of road segments. There can be multiple

segments for a path.

“GameName.traffic”: This is a text file. Each line describes a path. First number is the

float value which describes the density of car traffic. The numbers coming after are

40

the starting and ending vectors of road segments. There can be multiple segments for

a path.

5.2.4 Map Files
Map files are text files. In the first part of these files, there are the descriptions of the

objects (visual objects with type human, vehicle, and static). Each line indicates only
one object. The description of the objects includes these values in a plain string
format: (name of the object, type of object, name of the model, object position,

object direction).

After objects are done, there will be an indicator “#”, which means that road data
will come after. The road data is same as pedestrian and traffic files described in

previous section.

After road data is done, there will be another “#", which means traffic objects
descriptions will come after. These types of objects are described similarly with human
or vehicle objects: (hame of the object, type of object, secondary type, name of the

model, object position, object direction).

5.2.5 Log Files
Log files are the files created after an animation or game is viewed in viewer mode.

These are recorded in the same folder with the animation or game. They are simple
text files, includes the number or traffic errors, or wrong answers to questions in game
or animations. The name of the files are made with the username that user has

entered at the beginning of the program. ‘username.log’

5.2.6 Storing Files in “.tar” Format
As we know, there is no standard tool for compressing/extracting tar files in windows.

We will use the libraries of 7zip program for all archiving purposes. Although it supports

several formats, we will be using it for just tar/untar files.

Addifional information about 7zip can be found in: http://www.7-zip.org/

41

http://www.7-zip.org/

6 SEQUENCE DIAGRAMS

6.1 Sequences Related to User Interface
Below are definitions of some typical types we used in our sequence diagrams.

User Interface: It is just user-computer interface described at GUI design part.

A/G File : An animation or game file in our own file format.
BaseApp : An animation or game object described at class diagrams.
6.1.1 Ruler

As described at GUI design part there is going to be a ruler to cross the frames on 3D
view subpart of the editor. When GUI detects any attempt to change the ruler the
new position of the ruler is set on the screen and corresponding frame is loaded to 3D
part of the editor by using graphic engine and Al (Al decides the correct positions of

objects).

42

Userinterface

|
|
et Ruler Indicator
I

F———5eat Ruler
|

send Requast

prediciMNextPasition {_E-.-Irnnmsnt data)
T
I
I
set_seconds (object behaviours)

frame input

Display Frame data

—
|
F———5et 30 Part

-

g

P] e ey E e ey e e e L e L S| LRl ARGl

Ruler Sequence Diagram

6.1.2 Load Animation / Game
When GUI detects a user press ‘Ac’ tool-command as shown on the figure at GUI-

Editor Design part , it directs the request to File Manager class. File Manager opens

and reads the desired A/G file. Then a BaseApp object is created. The order we load

43

into our A/G file will effect the sequence on the below diagram. Since it is just about
the coding, later on we may change the order. For this time it is assumed that
information of attached messages in A/G file is kept before the whole objects in
animation or game. So in the below diagram first all messages information are loaded
to the animation or game object , then information of whole objects are read and
loaded to it. Then graphics engine uses our BaseApp object and displays the frames
on 3D part of the editor. Also with respect to the properties of BaseApp, the other
subparts of the editor are set. For example, with respect to the mode (loaded

animation or loaded game), the editor is shaped in a distinct way.

Userlnterface ‘M ‘ A/G File ‘ ‘ BaseAgp ‘ [Map ‘ Model File |GraphicEngine

{2
c0
o
]

| I | |

| | | | |

open | | I | |

- | | | |
| | opendread file | | | | |
| e | | | |
| | | | | | |
| | create | | | |
] I I ol | I]
I I I Grasiti I | I
| | | /| i | I
| | |] constustor | I
I I I M I I I
| | | | | | |
| | | | | | |
| | | | | | |
| | | Load Message Data | I | |
| I 4 + » | |
| | |] | | |
I | I i =y I I I
| | | allMessages push | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | 1 I | 1
| | | | | | |
| | | opendread file | | |
| » | L 1 M| |
| | | | | | |
| | | | | | |
| | Load BaseApp Data | | | |
| I ! » | | |
| | | | Load Map Data | | |
| | | | |
] | |] gt |]
: : : : mapObject.pish : : :
i If nat EOF, | 1 | | 1
: L ! ECF indicator! : ! :
] | | Nl | |]
| | | close Model File | | 1
| + + + +] |
| | | | | | |
| | read File | | | | |
| " | | | |
| | | 1 I | 1
: | EOFindicator | . , : .
| | | | | | |
| | | | | | |
| | | | | | e |
| | f . | | | " |
i | BaseApp information | i3 | i |
| | | ; | | | |
L | | Display frames I | | 1
A _setParts ! ! | ! ! |
| | | | I | |
,5_,__) | |] I |]
I | | I | | I

Load Animation/Game Sequence Diagram

44

6.1.3 Convert Animation to .avi format
When GUI detects a user press ‘Aktar’ tool-command as shown on the figure at GUI-
Editor Design part, it directs the request to graphic and sound engine. Graphic engine

converts the animation to “.jpeg” files and sound engine captures the sound. Then
“Jpeg” files and “.wav” file are sent to ffmpeg library by the file manager class and

“.avi” format is created with ffmpeg. And a feedback is sent to GUL.

Interd -Eila M Graphic Engine Sound Engine EM ;

|
Get "Aktar indicator
|

i
I
I
|
send Request

send Reqgues!

Convert lo jpg

il i i il i v i

;
Caplure way

&

Jpg and avi files

avl files

Finished process indicator

by e iy el N el) LSy e L4, g e Sl N -y e iy St -ty =y i |

e e e
—_—————— Yy ——— - —_——————

Animation Export to ".avi’ Sequence Diagram

6.1.4 Add Object
When GUI detects a user pressing on ‘Ara¢ Kutusu' as shown on the figure at GUI-

Editor Design part , it directs the request to BaseApp object. Corresponding object is

created and added to the objects of Map. And through the File Manager, this

45

object’'s model files data are sent to graphics engine. Then graphics engine adds the

object to the current display.

| MapObject push

Userlnterface BaseAnp Visual Obiect IMap FileManager GraphicEngine
Model! File
[T
|
Add Object indicator : : |
Send Request | | :
1 create : |
L___ﬁ :
| |
I '
CCanstructor |
i |
|
|
|
|
|

Object Type

T
|
[
|
|
|
|
|
|
|
|
|
|
[
|
|
T
|

Y |
Object Type |

|

: |

| getmodalfiles

|

I’_ flledala |

EEE—— |
|

|
D Display Model

|

|

|

y

displayed indicator

T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I |
: Set3D part :
I |
|

Object Addition Sequence Diagram

6.1.5 Capture
When user wants to capture sound for messages by microphone, sound engine

creates a message object. Then, it loads the buffer of this message object with the

incoming audio data.

46

Userlnterface

Sound Engine Message

i i

| |

Caplure | |

y |

| |

| |

Send Audic Data I :
o)

/1| Create |

p———

| |
|

awdio data | Load Buffer

Finishad process indicator

ey e et e T et

T

Sound Capture Sequence Diagram

6.1.6 Save Animation or Game File

When any save request is detected an A /G file is created as a respond by the File

Manager. File Manager accesses the BaseApp class and gets the data to be saved,

writes them into the A/G file. All the buffers (in message objects are also saved info

.wav files) at the end closes the file and finalize the process.

47

Userlnterface

save

Save indicator

(e
|

FileManager AIG File Basedfpp Sound Enging Wave File
I I | | !
|] | | |
| I | | |

= I | | |
| create and open I | | I
| = | | |
e |
| I | | i
| I | | i
accsess			
L :;‘1			
I			
]			
L Get Roat Data ! : 1			
] craate		:	
] I I &			
wave file information		'1	
I	»		
: [: get all Messages :			
	.	:	
I I	i		
		Load Buffers 1o wave files	
I	™		
I I	..1		
Save Data I i			
I =	I		
I I I I			
Close File I	I		
) I			
I I			
]			
I			

Save Animation/Game File Sequence Diagram

6.1.7 Play Selected Message
Sound Engine plays the wave that was previously loaded info memory.

Userinterface

Sound Engine

play raguest

buffar

U__T_JI’______.

Finished process indicator |

EEE R S T

play

Play Selected Message Sequence Diagram

48

6.1.8 Displaying Animations

User Inderiace Animadica Graphic Ergire fdap chjects: VisuziObject &1 Engine
, i i | | |
' ' : | I I
b
| | | ! ' !

| I I
| I S8% CaAmera I | | 1
1 | | | I I
I | | | I |
| | chpec: Mame |] 1
1 | | dl objectsfi] : :
—_———
: : : command | I |
+ =1 I
| | | | | .
I | | | !pr:di:IN:xIPmtr_'nlEm-irunmcnl dala and Command) I
! I I digplay :
| [km”—‘l
| |
| |
| |
| |
| |

PR ——

Animation Display Sequence Diagram

This sequence diagram summarizes processing only one entry of commands vector in

animation class. For all entries in commands, the above procedure would be followed

up to the end. As we abstracted the commands vector, it handles consecutive

camera positions and objects behaviours like run, walk, turn, stop etc. Once the

camera is set by ‘Graphic Engine’, then the controlled objects are replaced

according to the given command by the Al Engine.

49

6.1.9 Playing Games

User Inferaca Gama Graphic Ergina Map hero: Hirman Al Engine
T] 1 |
| | |
I | | | [|
Fhay | [[i
| [|
! ! : | |]
I I S8% camera ! | [|
I
| |]
| | |
| [|
I | |
| |]
| | |
| [|
! I I | |]
| | |
KeyboardCB ar MousaCB | [|
1 I i : - 5
t A
I I I I PradictdextiPosition| Envircnment Data) 1
I | | [] £
| | |
| [|
! I I | |]
| I I l.1r=-|.':;.13."_,_,..—-"1 [|
1 | | display i i
| | &
[|
I | | I i
| | | I |
I | |

Game Play Sequence Diagram

In playing game, we just keep track of the movements of our hero with respect to the
keyboard or mouse inputs. However, the other objects have to obey the predefined
Al’s.

7 SOUND EFFECTS DESIGN

In editor part of our program, we will have only decorative sound effects. These sound
effects will be played when user clicks on a butfton or after an action takes place.
Apart from these sound effects, in editor part user will be able to record sound and

play this sound before attaching to a message.

In viewer part (both animations and games), we have environmental sounds for
realistic ambiance. These sounds will be similar to sounds that we hear everyday in the
streets. We will have several different sound effects recorded for this purpose and they
will be played randomly in our program. Since it will be playing all of the time, we will
start playing those sounds, from start of the game or animation, until play or pause is

pressed in animation or the end of the game.

50

In games, we need children to be aware of their surrounding, so we will play sounds
for cars, with respect to their distance to the student. As the distance becomes less,
the volume of a car will be larger. Also, we will adjust the frequencies of the sounds
with respect to the speed of the car (higher speed higher frequency). We expect the
student to listen to the surrounding to detect the incoming cars. Also there will be

walking/running sound effects for the movements of player.

In animation, most of the sound effects will be same as the games. The difference will
be because of the fact that there wil be no player, so there wil be no
walking/running sound effects. There will be just the sounds of cars with respect to

camera position.

Sounds used for effects will be in such a format that it will be a short constant sound
which can easily be placed in a loop as long as the animation or game confinues.
Sounds attached to objects will start playing when the object starts moving and will

stop when the object stops.

An important note: In both games and animations, when a screen message appears,
we will pause all of the sounds and play the recorded sound of the screen message, if

it exists.

8 ARTIFICIAL INTELLIGENCE DESIGN

In our project we will be using Al in two occasions.

One of them is to determine automated intelligent movements (random movements)
of the vehicles and pedestrians. This occurs only in games since in only in games we
have random ftraffic (for both pedestrians and vehicles). It includes: the setting of
speed of the car according to other cars on the road, waiting for other cars in road
junctions, waiting in the tfraffic lights, obeying the traffic rules, etc. This occasion of Al

will not be used in animations since we don't need cars and pedestrians to obey rules

51

in animations, because the instructor may want to demonstrate what is wrong to

students.

The other occasion is to determine and normalize the standard movements of
vehicles and pedestrians. This occurs in both games and animations. It includes:
keeping the cars on the roads, smoothing turnings, calculating the paths, detecting

the activation of blue areacs, etc.

the actual path of the car will
be calculated by Al engine.

We will be keeping track of those dicks as the
comesponding commands in our structure
(Animation Class). Movement of the caris
recalculated in animation playing.

N
@

R

User clicks here!

In animations, so instructor will only click on the screen to move cars and pedestrians,
to a specific location. He will just choose the ending point of the movement for the
chosen object. Then, the path will be calculated and the steering behaviours of
vehicles will be determined by Al engine. The graphics engine will use this calculated
path afterwards. We will be keeping just tracks of these paths and recreate them

while playing animations or editing the animations.

52

9 ADDITIONAL CONVENTIONS
9.1 Virtual 3D World

Our virtual environment is a 3D world where each element of the map is associated
with a two dimensional position vector (since any map element always stands on the
floor, i.e. doesn't fly). The floor of our world lies in the positive x-z plane (so all

coordinates are positive).

In our world, unit coordinates are assumed to be equal to meters. So 2 meter long car
will appear 2 units long (in horizontal coordinates) in our world. Also a 10 meter high

building will appear as 10 units in y coordinate.

The floor of our virtual world is flat. So we don't need any mechanism for describing
the natural elevation (such as mountains). So we will need only models for our visual

objects (humans, vehicles, buildings, etc) while rendering our virtual world.

Our virtual world is finite. So while creating the world, we must give boundary
parameters for x and z coordinates. Therefore, the size of the world can be different
(which can be set by user while creating the world). Height of our world is fixed to 20
units in y direction (actually it is not important for our program:; it just must be higher
than the longest building model). So, we can draw our model in a rectangular prism.

Our virtual world is described as entities of Map class (the definition of this class is
given in another section). The objects of this class will include data about size of the

world and the visual objects placed in that world.

Our animations and games occur in virtual world. So any animation or game is

associated with a Map object.

53

9.2 Camera Modes
We will use different camera views for different parts of our program.

9.2.1 Editor
For the editor part, user will be able to view the world that he is designing with a

perspective view. He will be able to zoom in/out and change the camera angle to

view the desired place in the map.

9.2.2 Viewer
9.2.2.1 Game

In games, user will have only one view to see the environment. This view will be from
the eye of the user. We will use perspective view with an angle of 60 degrees both
vertically and horizontally. We provided these angles to have a more realistic look as it

is important for us to make user feel in a sensation of reality.

9.2.2.2 Animation

In animation part of our program, field of view will be bound to objects defined by the
educator in the editor part. These views will be defined during the creation of
animations as follows:
. The educator will choose an object and attach the camera to it. First
object added to the animation will be our default camera view.
. After aftaching the camera, user will choose the field of view of the

camera, which can be either:

o) From front

o From back
¢} From right

o From left

User will be able to change the camera view for every frame. For example, after
selecting a front view for an object a few frames before, he can change that view to
a back view a few frames later. These camera views will also be stored in the

animation structure.

54

9.3 Frame Rate Issue in Games and Animations
All applications which include animations have a problem with setting the rates of the

animations. When a scene is showed on the screen, it takes long time if there are a lot
of objects in the scene; it takes less when there are a few objects in the scene. So it
may end with animations and object movements asynchronous in the game, which

may be unpredictable and fatal for our application.

We overcome this issue by calculating the next positions of our objects by the help of

our Al engine. This is done as follows:

Our Al engine runs as an independent thread in our program. This thread will
recalculate the positions of objects at fixed time intervals (let's say 30 times in @
second). Frame rendering will be done according to these calculations. Our
rendering engine will not keep track of frames per second. It will repeatedly render
the objects as much as it can. Since our objects will do fixed (30 times) number of unit
movements (it can be calculated as speed of the objects in a second over 30), our
frame rate doesn't affect the speeds of the objects. So the transformation values of

objects per frame are not fixed within the game.

This method will ensure that our objects will move at a determined speed. But, it may
cause frame skipping if the computer's graphics card is not very strong. But we ensure
that there will be no fast or slow movement of objects because of computer power.

We gave an example below.

The speed of the object is 30 units per second (therefore 1 unit per calculation) and
the frame rate is 30 frames per second: then the speed per frame is 1 unit at average.
The frame rate is 60 frames per second: the speed per frame is 0.5 unit (which means

the object will not move in one of two consecutive frames).

We may adjust the number of calculations to have smoother movement for our

objects or to have more performance.

55

9.4 Traffic Density Issues
We mentioned about fraffic density in several sections of this document. We keep the

density as a floating point value between 0 and 1 (actually it cannot be equal to 0
since it means there is no traffic and we don't need that path). 1 means a traffic
density of maximum, which is equal to 20 objects per minute. The values between 0
and 1 will be interpolated according to maximum value. This value is not a constant
value, but an average value. Because in games, cars and pedestrians move
randomly, they wait in traffic lights, decrease speed not to crush other cars and
pedestrians. This changes the distribution of the fraffic at specific location, but at

average it should be equal to density value.

9.5 Implementation of Modules
Our application will be composed of two executables: Editor and Viewer. Since these

two executables will share most of the modules, our modules will be implemented as
dynamic linked libraries (DLL). It also gives us the chance to upgrade our application
easily by recompiling DLLs after the release. Our modules are just the modules in our

DFD diagrams.

10 CONCLUSION

This document includes the design details of our software tool. During the preparation
of the document we examined all of the external tools and libraries which will be used
in the development steps of our tool. We have determined the following design
details:

e Class structure and classes

e Data structure

e File structure

e The tool and libraries that we will use

e The relafion and connections between the external tools, libraries and our main

program
e Flow of data which is illustrated by using DFD diagrams

e Our conventions to the application

56

11 APPENDIX

11.1Appendix A — Class Hierarchy and Relations

—

VisualObject

+combine()

Vector2 SimpleVehi T -objectPosition : Vector2
-x : float - ""’T ehe ! ! - -objectDirection : Vector2
-y : float i cle. ! -model
| . -
| | -objectName : string
************ AN * -objectType
+setModel()
Human Vehicle StaticObjects Traffic BlueArea
-secType : string %-type sint
+walk(in v : Vector2) : void +go(in v : Vector2) : void i -rT‘lessf’:lge : UserMessage
+run(in v : Vector2) : void +isActive()
+rotate(in v : Vector2) : void
+look(in v : Vector2) : void 1
1
é 1
BaseApp
Map @ MaP : Map UserMessage
-objects : vector <VisualObject > 1 -mode : int -messageType : string
-mapName : string 1 -aIIMeCssagtes : vector <UserMessage> -messageName : string
-road : Road -errorCoun S > -soundbuffer
+savsv() NextPosition() 1 * |text: string
+predictNextPosition -
+addObject() +display()
1 +removeObject()
1
Game Animation
-mainCharacter : VisualObject Seconds -t
-startMission : BlueArea aTime - int Vector3
-endMission : BlueArea »commandé - vector <string>[] -x : float
-otherBlues : vector <BlueArea> _currCamposition : Ve Ctorg [-y : float
-pedestrian : vector <Path> _currCamLookAL : Veclor3 -x : float
-traffic : vector <Path> .
-movements : vector <string> +play()
+keyboardCB() pause()
+mouseCB()
1
1 1
Road 1 Path
N . -segments : vector <RoadSegment>
segments : vector <RoadSegment> density : float = 0.5
1
Userlnterface
FileManager
+setMode()
+getMode() +saveAnimation()
* * +setFrame() +saveGame()
+selectObject() +loadAnimation()
+addObject() +loadGame()
RoadSegment +rmObiject() +exportAnimation()
-start : Vector2 +changeCamera() +savelLog()
-end : Vector2 +showProperties() +loadModel()
-objects : vector <Traffic> +getUsername() +loadSound()

57

11.2 Appendix B — Gantt Chart

58

ID |Task Name Start Finish January [11 February [01 March [21 March [11 April [01 May [21 May
23.01 [3001 [06.02 [13.02 [2002 [27.02 [0603 [13.03 [2003 [27.03 [03.04 [1004 [17.04 [24.04 | 01.05 [08.05 [15.05 [22.05 | 29.05 [05.06

1 Living Schedule Mon 06.02.06 Sun 12.02.06

2 Living Schedule is ready Mon 06.02.06 Sun 12.02.06 ‘ 06.02

3 Design Review Sun 19.02.06 Sun 19.02.06 '

4 Design review is made Sun 19.02.06 Sun 19.02.06 ‘ 19.02

5 Configuration Management Plan Sun 12.02.06 Mon 27.02.06 —

6 Learning CM Details Sun 12.02.06 Wed 15.02.06 E

7 Defining Org. CM Framework Wed 15.02.06 Sat 18.02.06 l:]

8 Defining CM Process Sat 18.02.06 Mon 20.02.06 D

9 Setup CVS Mon 20.02.06 Thu 23.02.06 :l

10 Applying Determined Steps Mon 20.02.06 Thu 23.02.06 E

11 CM Plan Documentation Thu 23.02.06 Sun 26.02.06 l:]

12 CM Plan Report Sun 26.02.06 Mon 27.02.06 ‘ 26.02

13 | Designing Web Page Sun 05.02.06 Mon 27.02.06 —

14 Creating a storyboard Sun 05.02.06 Sun 12.02.06

15 Planning navigational tools Sun 12.02.06 Mon 20.02.06

16 Create web page Mon 20.02.06 Mon 27.02.06

17 Web page is working Sun 26.02.06 Sun 26.02.06 ‘ 26.02

18 |Implementation Wed 01.02.06 Sun 23.04.06 —

19 User Interface (CEGUI) Wed 01.02.06 Fri 10.02.06 :]

20 3D Model Drawing Wed 01.02.06 Mon 20.02.06 l ‘

21 File Manager Module Mon 20.02.06 Tue 28.02.06 :]

22 Integration of OpenAL Wed 01.03.06 Fri 31.03.06 []

23 Integration of OGRE Wed 01.03.06 Fri 31.03.06 l]

24 Integration of OpenSteer Wed 01.03.06 Fri 31.03.06 []

25 Editor Module Sun 19.03.06 Sun 23.04.06 —

26 Animation Editor Sun 19.03.06 Sun 23.04.06 l ‘

27 Game Editor Sun 19.03.06 Sun 23.04.06 [‘

28 Viewer Module Sun 19.03.06 Sun 23.04.06 —

29 Game viewer Sun 19.03.06 ~ Sun 23.04.06 [‘

30 Animation Viewer Sun 19.03.06 Sun 23.04.06 [‘

31 First Release Sun 23.04.06 Mon 24.04.06 ‘ 23.04

32 Test Specifications Sat 01.04.06 Sun 28.05.06

33 Defining testing strategy Sat01.04.06 Sun 09.04.06 S

34 Defining test record keeping strategy Sat 01.04.06 Sun 09.04.06

35 Defining testing tools Sun 09.04.06 Sat 15.04.06

36 Defining types of tests Sun 09.04.06 Sat 15.04.06

37 Defining how to debug Thu 06.04.06 Sat 15.04.06 S

38 Defining test schedule Mon 10.04.06 Fri 14.04.06 D

39 Test specification plan documentation Sun 23.04.06 Sun 07.05.06 l:]

40 Debugging Sun 16.04.06 Sun 28.05.06 ‘

41 Final Release and Demo Mon 29.05.06 Wed 31.05.06 ‘ 29.05

Project: implSchedule Task :] Progress Summary ﬁ External Tasks |:| Deadline @
Date: Sun 08.01.06 Split T Milestone ‘ Project Summary ﬁ ExternalMiIestone‘

Page 1

	ANKA_designKAPAK.pdf
	CENG491

	DetailedDesignREPORT.pdf
	
	PRELUDE
	1 INTRODUCTION
	1.1 Purpose and Scope of the Document
	1.2 Design Constraints and Limitations
	1.3 Design Goals
	2 OVERVIEW OF THE APPLICATION
	2.1 Preparing the Environment
	2.1.1 Defining the map
	2.1.2 Constructing a game
	2.1.3 Constructing an animation

	2.2 Playing the Game
	2.3 Watching the Animation

	3 USER INTERFACE DESIGN
	3.1 Player Main Menu Design
	3.2 Editor Design
	3.2.1 Adding a User Display Message
	3.2.2 ‘Yeni’ tool-command
	3.2.3 ‘Aktar’ tool-command
	3.2.4 ‘Aç’ tool-command
	3.2.5 ‘Araç Kutusu’ Sub-Window
	3.2.6 ‘Eklenmiş Nesneler’ Sub-Window
	3.2.7 ‘Özellikler’ Sub-Window

	3.3 Viewer Design

	4 SYSTEM OVERVIEW
	4.1 User Interface (1.0)
	Input Handling (1.1)
	4.1.2 Output Integration (1.2)

	4.2 Graphics Engine (2.0)
	4.3 Sound Engine (3.0)
	4.4 AI Engine (4.0)
	4.5 Editor Engine (5A.0)
	4.5.1 Program Core (5A.1)
	4.5.2 Data Calculations (5A.2)
	4.5.3 Command Consumer (5A.3)

	4.6 Viewer Engine (5B.0)
	4.6.1 Action Triggers (5B.3)

	4.7 File Manager (6.0)
	4.7.1 Save (6.1)
	4.7.2 Load (6.2)
	4.7.3 Load Model and Sound (6.3)
	Export Animation (6.4)

	5 DATA DESIGN
	5.1 Classes
	5.1.1 VisualObject Class
	5.1.2 Human Class
	5.1.3 Vehicle Class
	5.1.4 StaticObjects Class
	5.1.5 Traffic Class
	5.1.6 BlueArea Class
	5.1.7 UserMessage Class
	5.1.8 BaseApp Class
	5.1.9 Game Class
	5.1.10 Animation Class
	5.1.11 Map Class
	5.1.12 Road Class
	5.1.13 RoadSegment Class
	5.1.14 Path Class
	5.1.15 FileManager Class
	5.1.16 UserInterface Class
	5.1.17 Vector2 Class
	5.1.18 Vector3 Class

	5.2 File Formats
	5.2.1 Model Files
	The relation between model files and VisualObject classes

	5.2.2 Animation Files
	5.2.3 Game Files
	5.2.4 Map Files
	5.2.5 Log Files
	5.2.6 Storing Files in “.tar” Format

	6 SEQUENCE DIAGRAMS
	6.1 Sequences Related to User Interface
	6.1.1 Ruler
	6.1.2 Load Animation / Game
	6.1.3 Convert Animation to .avi format
	6.1.4 Add Object
	6.1.5 Capture
	6.1.6 Save Animation or Game File
	6.1.7 Play Selected Message
	6.1.8 Displaying Animations
	6.1.9 Playing Games

	7 SOUND EFFECTS DESIGN
	8 ARTIFICIAL INTELLIGENCE DESIGN
	9 ADDITIONAL CONVENTIONS
	9.1 Virtual 3D World
	9.2 Camera Modes
	9.2.1 Editor
	9.2.2 Viewer
	9.2.2.1 Game
	9.2.2.2 Animation

	9.3 Frame Rate Issue in Games and Animations
	9.4 Traffic Density Issues
	9.5 Implementation of Modules

	10 CONCLUSION
	11 APPENDIX
	11.1 Appendix A – Class Hierarchy and Relations
	11.2 Appendix B – Gantt Chart

	implSchedule.pdf

